239 research outputs found

    Aneurysms of the intracranial segment of the ophthalmic artery trunk. case report and systematic literature review

    Get PDF
    Aneurysms arising from the ophthalmic artery trunk (OAT) are very rare, particularly in the artery's intracranial course. The onset of a subarachnoid hemorrhage (SAH) from a ruptured OAT aneurysm in this segment is extremely rare. We present a case and discuss the anatomy, clinical significance, and therapeutic options for an aneurysm at this site. We also retrospectively analyzed the record of a patient with a ruptured aneurysm of the intracranial segment of the OAT and conducted a comprehensive and systematic review of the PubMed and Scopus databases for literature on this pathology. Only one case report of SAH from an aneurysm of the intracranial segment of the OAT was published in the literature. Only in our case was the intracranial OAT segment aneurysm discovered in the acute phase of SAH. Conventional angiography with three-dimensional acquisition may help detect aneurysms at this level. Detailed knowledge of the anatomy of the OAT is of paramount importance for both surgical and endovascular approaches. Surgical treatment is complex because of difficulties in accessing the orbital region and the risk of optic nerve and vascular injuries. Endovascular treatment, when feasible, could be a good alternative to reduce the risk of loss of vision related to surgical manipulation

    Production of benzaldehyde, benzyl alcohol and benzoic acid by yeasts and Botrytis cinerea isolated from grape musts and wines

    Get PDF
    The capacity of 100 yeast strains - isolated from grape musts and wines from the Istituto Sperimentale per l'Enologia collection - to produce benzaldehyde, benzyl alcohol and benzoic acid was verified by inoculation into a synthetic nutrient medium (MNS). Schizosaccharomyces and Zygosaccharomyces were strongest in producing benzaldehyde (maximal amount found 1200 µg/l) and benzyl alcohol (maximally 523 µg/l). Zygosaccharomyces was also most effective in the production of benzoic acid (maximally 536 µg/l), followed by Saccharomyces, Cryptococcus, Kloeckera and Torulaspora. The hypothesis was verified that yeasts can be an exogenous source of the benzyl alcohol oxidizing enzyme in grape musts and wines. Wine yeast strains of Saccharomyces spp., Zygosaccharomyces spp. and Schizosaccharomyces spp. fermenting MNS containing 150 g/l glucose, with benzyl alcohol added, transformed this into benzoic acid only when glucose was disappearing, but not into benzaldehyde. No difference was observed between aerobic and anaerobic fermentation conditions. The uptake of benzyl alcohol was rapid in fermentation essays in presence of only 10 g/l glucose and in assimilation essais performed in yeast nitrogen base broth with assimilable carbon compounds added. A catabolic repression by glucose appears likely. Botrytis cinerea was able to transform benzyl alcohol into benzaldehyde and benzoic acid on Czapek-Dox broth with 30 g/l sucrose added. Benzyl alcohol was transformed by wine yeasts into benzoic acid when the concentration of glucose in the mineral medium was less than 10 g/l, but no production of benzaldehyde was observed. A catabolic repression of this transformation by glucose is likely. Botrytis cinerea was able to produce benzaldehyde in a mineral medium with benzyl alcohol and sucrose added

    Simulation of heat transport in low-dimensional oscillator lattices

    Full text link
    The study of heat transport in low-dimensional oscillator lattices presents a formidable challenge. Theoretical efforts have been made trying to reveal the underlying mechanism of diversified heat transport behaviors. In lack of a unified rigorous treatment, approximate theories often may embody controversial predictions. It is therefore of ultimate importance that one can rely on numerical simulations in the investigation of heat transfer processes in low-dimensional lattices. The simulation of heat transport using the non-equilibrium heat bath method and the Green-Kubo method will be introduced. It is found that one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) momentum-conserving nonlinear lattices display power-law divergent, logarithmic divergent and constant thermal conductivities, respectively. Next, a novel diffusion method is also introduced. The heat diffusion theory connects the energy diffusion and heat conduction in a straightforward manner. This enables one to use the diffusion method to investigate the objective of heat transport. In addition, it contains fundamental information about the heat transport process which cannot readily be gathered otherwise.Comment: Article published in: Thermal transport in low dimensions: From statistical physics to nanoscale heat transfer, S. Lepri, ed. Lecture Notes in Physics, vol. 921, pp. 239 - 274, Springer-Verlag, Berlin, Heidelberg, New York (2016

    Long-term survival of stage I multiple myeloma given chemotherapy just after diagnosis or at progression of the disease: a multicentre randomized study

    Get PDF
    We conducted a randomized trial to evaluate whether melphalan-prednisone (MPH-P) treatment administered just after diagnosis improves survival of stage I multiple myeloma (MM). Between January 1987 and March 1993, 145 consecutive previously untreated patients with stage I MM were randomized between treatment with MPH-P (administered for 4 days every 6 weeks) just after diagnosis and treatment only at disease progression. Survival was not influenced by MPH-P treatment either administered just after diagnosis or at disease progression (64 vs 71 months respectively). Comparing the first with the second group the odds ratio of death is 1.17 (95% confidence interval 0.57–2.42;P = 0.64). Disease progression occurred within a year in about 50% of patients who were initially untreated. Response rate was similar in both groups, but duration of response was shorter in patients who were treated at disease progression (48 vs 79 months, P = 0.044). Patients actually treated at disease progression (34/70) survived shorter than those who had neither disease progression nor treatment (56 vs > 92 months;P = 0.005). Starting MPH-P just after diagnosis does not improve survival and response rate in stage I MM, with respect to deferring therapy until disease progression. However, patients with stage I MM randomized to have treatment delayed and who actually progressed and were treated had shorter survival than those with stable disease and no treatment. Biologic or other disease features could identify these subgroups of patients. © 2000 Cancer Research Campaig

    Detailed Examination of Transport Coefficients in Cubic-Plus-Quartic Oscillator Chains

    Full text link
    We examine the thermal conductivity and bulk viscosity of a one-dimensional (1D) chain of particles with cubic-plus-quartic interparticle potentials and no on-site potentials. This system is equivalent to the FPU-alpha beta system in a subset of its parameter space. We identify three distinct frequency regimes which we call the hydrodynamic regime, the perturbative regime and the collisionless regime. In the lowest frequency regime (the hydrodynamic regime) heat is transported ballistically by long wavelength sound modes. The model that we use to describe this behaviour predicts that as the frequency goes to zero the frequency dependent bulk viscosity and the frequency dependent thermal conductivity should diverge with the same power law dependence on frequency. Thus, we can define the bulk Prandtl number as the ratio of the bulk viscosity to the thermal conductivity (with suitable prefactors to render it dimensionless). This dimensionless ratio should approach a constant value as frequency goes to zero. We use mode-coupling theory to predict the zero frequency limit. Values of the bulk Prandtl number from simulations are in agreement with these predictions over a wide range of system parameters. In the middle frequency regime, which we call the perturbative regime, heat is transported by sound modes which are damped by four-phonon processes. We call the highest frequency regime the collisionless regime since at these frequencies the observing times are much shorter than the characteristic relaxation times of phonons. The perturbative and collisionless regimes are discussed in detail in the appendices.Comment: Latex with references in .bib file. 36 pages, 8 figures. Submitted to J. Stat. Phys. on Sept. 2

    Visual Evoked Potentials Change as Heart Rate and Carotid Pressure Change

    Full text link
    The relationship between cardiovascular activity and the brain was explored by recording visual evoked potentials from the occipital regions of the scalp during systolic and diastolic pressure (Experiment I) and during fast and slow heartbeats at systolic and diastolic pressure (Experiment II). Visual evoked potentials changed significantly as heart rate and carotid pressure fluctuated normally, and these changes were markedly different in the right and left cerebral hemispheres. Evoked potentials recorded from the right hemisphere during various cardiac events differed significantly, whereas those recorded from the left did not. In both experiments, differences in the right hemisphere were due primarily to the P1 component, which was larger at diastolic than at systolic pressure. The present findings are consistent with formulations from behavioral studies suggesting that baroreceptor activity can influence sensory intake, and suggest that hemispheric specialization may play an important role in the relationship between cardiac events, the brain and behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73146/1/j.1469-8986.1982.tb02579.x.pd

    Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems

    Full text link
    Thermal transport is an important energy transfer process in nature. Phonon is the major energy carrier for heat in semiconductor and dielectric materials. In analogy to Ohm's law for electrical conductivity, Fourier's law is a fundamental rule of heat transfer in solids. It states that the thermal conductivity is independent of sample scale and geometry. Although Fourier's law has received great success in describing macroscopic thermal transport in the past two hundreds years, its validity in low dimensional systems is still an open question. Here we give a brief review of the recent developments in experimental, theoretical and numerical studies of heat transport in low dimensional systems, include lattice models, nanowires, nanotubes and graphenes. We will demonstrate that the phonon transports in low dimensional systems super-diffusively, which leads to a size dependent thermal conductivity. In other words, Fourier's law is breakdown in low dimensional structures
    corecore